

MPVM03N60

Intelligent Power Module

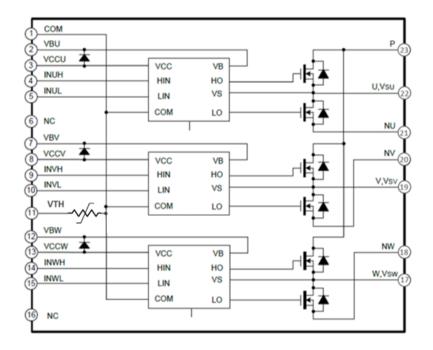
Features

- Integrated 6 fast recovery power MOSFETs (600V/3A)
- Integrated high voltage gate drive circuit (HVIC)
- Compatible with 3.3V & 5V input signal, effective at high level
- Insulation class 1500Vrms / min
- Integrated bootstrap functionality
- High reliability and thermal stability, good parameter consistency
- Built in negative temperature coefficient thermistor for temperature detection

Product Name	Marking	Package Type
MPVM03N60TAN	MPVM03N60TAN	DIP-23H
MPVM03N60TDN	MPVM03N60TDN	SOP-23H

Applications

- Frequency conversion fans
- Cooker hood
- Air conditioning compressor
- Dish washer
- Air cleaner



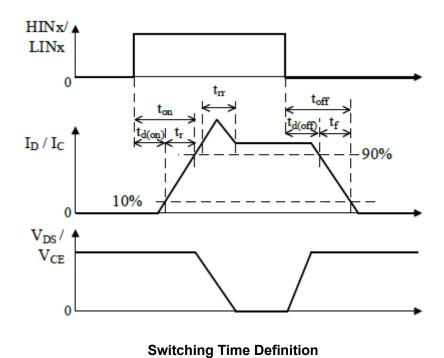
DIP-23H

SOP-23H

Internal Electrical Schematic

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
DC link supply voltage of P-N	V_{PN}	600	V
Single MOSFET output current, T _C =25℃	I _{D25}	3.0	
Single MOSFET output current, T _C =80 °C	I _{D80}	2.5	Α
Single MOSFET peak output current $T_C {=} 25 ^{\circ}\mathrm{C}$, pulse width ${<} 100 \mu s$	I _{DP}	5	Α
Power dissipation per MOSFET, T _C =25°C	P _D	13.9	W
Module supply voltage	V _{CC}	25	V
High side floating supply voltage (V _B reference to V _S)	V _{BS}	20	V
Input voltage	V _{IN}	-0.3~VCC+0.3	V
Operating junction temperature	TJ	-55 to 150	ိင
Operating case temperature, TJ≤150°C	T _C	-55 to 150	
Storage temperature range	T _{STG}	-55 to 150	°C
Single MOSFET thermal resistance, junction-case	Rejc	9	°C/W
Isolation test voltage (1min, RMS, f = 60Hz)	V _{ISO}	1500	Vrms
Bootstrap diode forward current,T _C =25℃	I _F	0.1	Α
Bootstrap diode peak forward current, $T_C=25^{\circ}C$, pulse width =1ms	I _{FP}	0.3	А


Recommended Operation Conditions

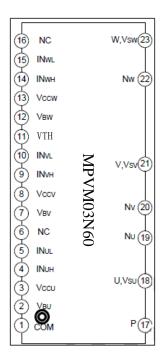
Parameter	Symbol		Unit		
Parameter	Symbol	Min.	Тур.	Max.	Onit
DC link supply voltage of P-N	V_{PN}	-	300-	400	V
Low side supply voltage	V _{CC}	13.5	15	16.5	V
High side floating supply voltage	V _{BS}	13.5	15	16.5	V
Logic "1" input voltage (LIN, HIN)	VIN(ON)	2.5	-	-	V
Logic "0" input voltage (LIN, HIN)	VIN(OFF)	-	-	0.8	V
External deadtime between HIN and LIN	Tdead	-	540	-	ns
PWM switching frequency, T _J ≤150°C	fPWM	-	16	-	KHz

Electrical Characteristics (unless otherwise noted, $T_j=25^{\circ}C$, $V_{CC}=V_{BS}=15V$)

Inverter Section

Dovementor	Symbol Condition -			Unit		
Parameter			Min.	Тур.	Max.	Unit
Drain-Source blocking voltage	B _{VDSS}	VIN=0V, I _D =250uA	600	-	-	V
Drain-Source leakage current	I _{DSS}	VDS=600V, VGS=0V	-	-	1	uA
Drain-Source on-state resistance	R _{DS(on)}	V _{GS} =10V, I _D =1.5A	-	2.8	3.4	Ω
Diode forward voltage	V _{SD}	V _{SG} =0V, I _s =1.5A	-	-	1.4	V
	t _{ON}			820		ns
	t _{OFF}	VPN=300V,		500		ns
Switching time	t _{rr}	VCC=VBS=15V ID=0.5A, VIN=0V~5V,		75		ns
	Eon	Inductive load		75		uJ
	E _{OFF}			8		uJ

Control Section


Dougenator	Cumbal	Condition		Value		Unit
Parameter	Symbol Condition		Min.	Тур.	Max.	Unit
Quiescent VCC supply current	I _{QCC}	VBIAS (VCC, VBS)	-	160	-	_
Quiescent VB supply current	I _{QBS}	=15V T _A = 25°C	-	70	120	μA

Low side undervoltage protection	UV _{CCR}	Reset level		8	8.9	9.8	V
High side undervoltage protection	UV_{BSR}	Reset level		8	8.9	9.8	V
Logic "1" input voltage (LIN, HIN)	V _{IH}	Logic high level	Between	2.5	-	-	V
Logic "0" input voltage (LIN, HIN)	V_{IL}	Logic low level	input and COM	1	1	0.8	V
	I _{IH}	VIN=5V	Between	-	6	15	
Input bias current for LIN, HIN	I _{IL}	VIN=0V	input and COM	-	-	1	μA

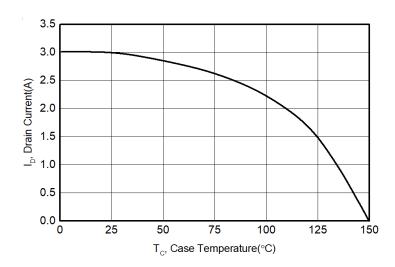
Bootstrap diode section

Parameter	Symbol	condition		Unit		
Parameter	Symbol	ymbol condition		Тур.	Max.	Onit
Converd voltage	V _F	I _F =10mA@ T _j =25℃	-	3.0	3.5	V
Forward voltage		I _F =10mA@ T _j =125℃	-	-	3.0	V
Reverse recovery time	t _{rr}	I _F =0.1A, V _R =30V, di _F /dt=-200A/μs	-	-	45	ns

Pin Assignment

Pin Description

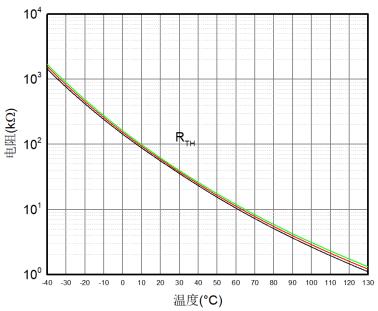
Pin Number	Pin name	I/O	Pin Description
1	COM	I/O	Module common ground
2	V _{BU}	I/O	U-phase high side floating IC supply voltage
3	V _{CCU}	I/O	U-phase low side driver supply voltage
4	I _{NUH}	1	U-phase high side gate driver input
5	I _{NUL}	1	U-phase low side gate driver input
6	NC	I/O	No Connection
7	V_{BV}	I/O	V-phase high side floating IC supply voltage
8	V _{CCV}	I/O	V-phase low side driver supply voltage
9	I _{NVH}	1	V-phase high side gate driver input
10	I _{NVL}	1	V-phase low side gate driver input
11	VTH	0	Negative temperature coefficient thermistor
12	V_{BW}	I/O	W-phase high side floating IC supply voltage
13	V _{CCW}	I/O	W-phase low side driver supply voltage
14	I _{NWH}	I	W-phase high side gate driver input
15	I _{NWL}	1	W-phase low side gate driver input
16	NC	I/O	No Connection
17	Р	I/O	Positive bus input voltage
18	U,V _{SU}	0	Motor U-phase output and U-phase high side
			drive bias voltage ground
19	NU	I/O	U-phase low side source
20	NV	I/O	V-phase low side source
21	V,V _{SV}	0	Motor V-phase output and V-phase high side
			drive bias voltage ground
22	NW	I/O	W-phase low side source
23	W,V _{SW}	0	Motor W-phase output and W-phase high side
			drive bias voltage ground


Function description

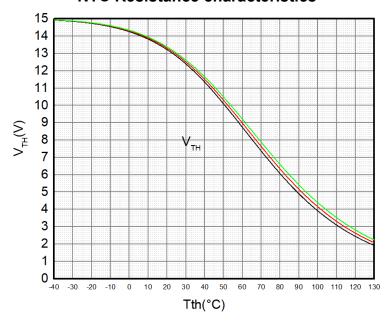
Input-output table

INH	INL	OUTPUT	REMARK
0	0	Z	The high and low sides of the bridge arm are closed
0	1	0	The low side of the bridge arm is opened
1	0	VDC	The high side of the bridge arm is opened
1	1	Forbid	Bridge arm punch through
Open	Open	Z	The high and low sides of the bridge arm are closed

Control sequence diagram

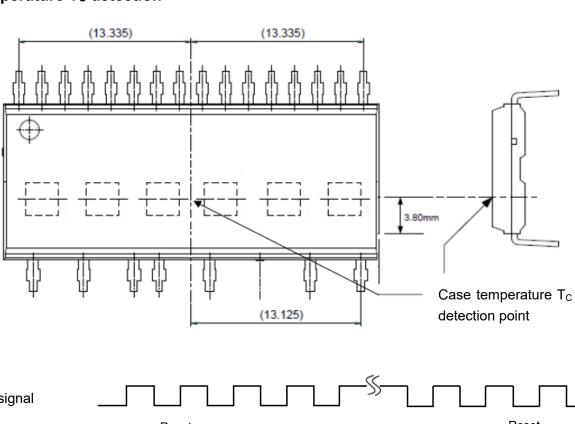


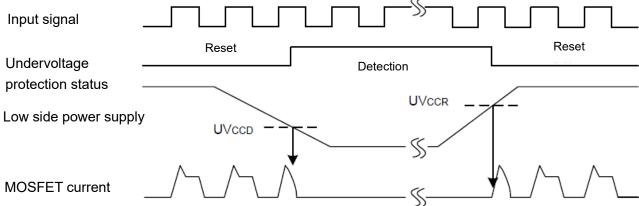
 $I_{\mbox{\scriptsize D}}$ Drain Current vs. Case Temperature

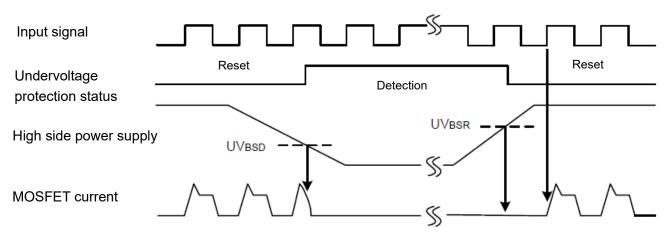

NTC 电阻

Doromotor	Symbol	Symbol		Value			
Parameter	Symbol	Symbol condition —	Min.	Тур.	Max.	Unit	
Thermister	nermistor R _{TH}	T _{TH} =25℃	44.65	47.00	49.35	k0	
Thermistor		T _{TH} =125℃	2.65	2.87	3.10	kΩ	

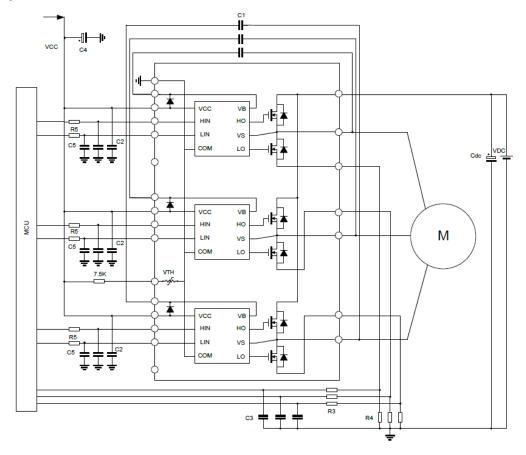
Note: T_{TH} is the temperature of thermistor itself. In the application circuit, the Vth pin passes through 7.5K Ω is pulled up to VCC; The figure below shows the resistance characteristics of NTC and the output voltage and temperature curve of Vth pin. NTC tolerance $\pm 5\%$. If you need to test the Tc, please carry out the experiment according to the practical application.




NTC Resistance characteristics

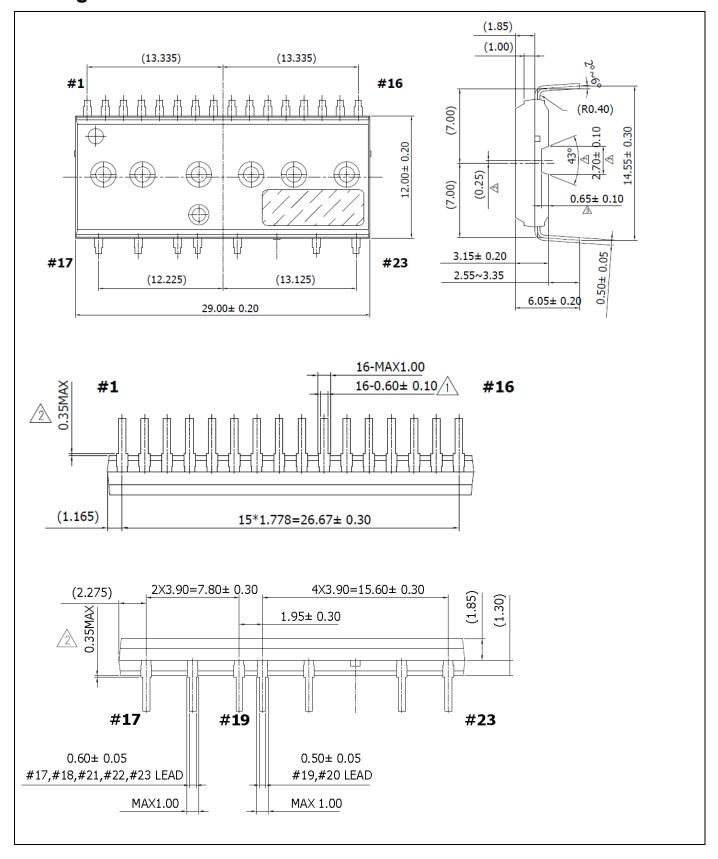

NTC Voltage characteristics

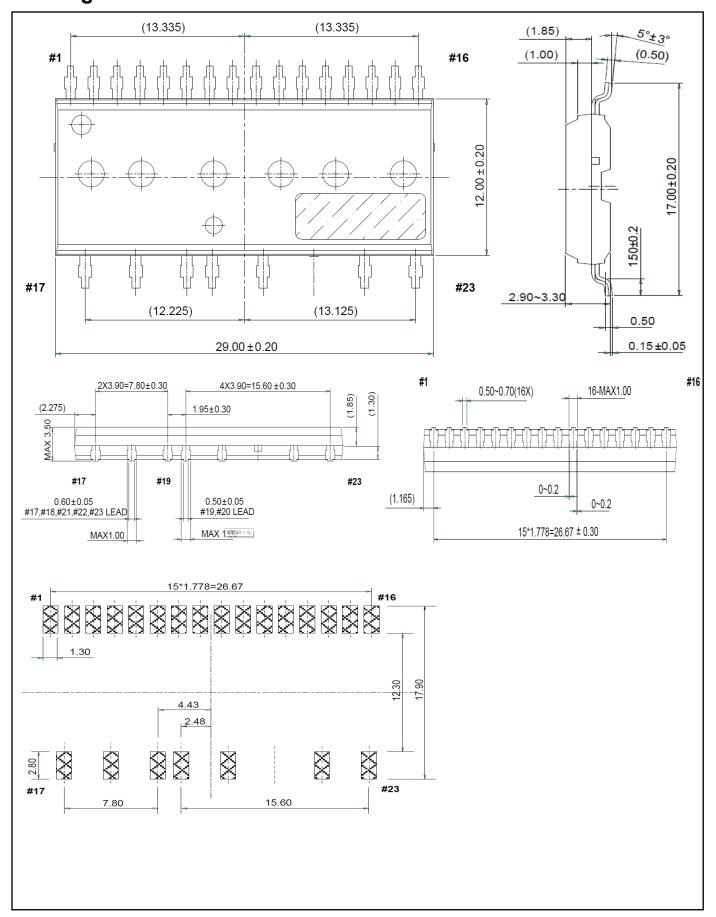
Case temperature Tc detection



Undervoltage protection (Low side)

Undervoltage protection (High side)


Typical Application Schematic:


Remark:

- (1) The wiring of each input pin shall be as short as possible, otherwise it may cause mis operation; in addition, RC filter can be used to reduce input signal noise.
- (2) All external capacitors should be located close to IPM.
- (3) In order to prevent surge damage, in addition to filter capacitance between PN, it is recommended to add a high-frequency non inductive smoothing capacitance, and the connection of capacitance should be as short as possible.
- (4) The filter capacitance at the input of VCC power supply is recommended to be at least 7 times of bootstrap capacitance C1.
- (5) The bootstrap capacitor C1 is suggested to adopt a capacitor with high frequency characteristics to absorb high frequency ripple current, and its capacitance value is suggested to be greater than 2.2uf.
- (6) The connection between current limiting resistor R4 and IPM shall be as short as possible to prevent the large surge voltage generated by the connection inductance from damaging IPM.

Package Outline DIP23

Package Outline SOP23

Revision History:

Revision	Date	Subjects (major changes since last revision)
1.0	2021-08	Initial Version

Disclaimer:

Operating conditions may differ from simulation assumptions in several aspects like level of DC-link voltage, applied gate-voltage and gate-resistor, case and junction temperatures as well as the power circuit stray-inductance. Therefore, deviations of parameters and assumptions used for the simulation and the real application may exist.

For these reasons we cannot take any responsibility or liability for the exactness or validity of the form's results. The form cannot replace a detailed reflection of the customers application with all of its operating conditions.

Accurate results depend on huge data, so with the measured data is increasing, we should be updated in real time and send it to the corresponding engineer so that he can know it in real time.